Gene Ontology (GO)#
Pathways represent interconnected molecular networks of signaling cascades that govern critical cellular processes. They provide understandings cellular behavior mechanisms, insights of disease progression and treatment responses. In an R&D organization, managing pathways across different datasets are crucial for gaining insights of potential therapeutic targets and intervention strategies.
In this notebook we manage a pathway registry based on “2023 GO Biological Process” ontology. We’ll walk you through the steps of registering pathways and link them to genes.
In the following Standardize metadata on-the-fly notebook, we’ll demonstrate how to perform a pathway enrichment analysis and track the dataset with LaminDB.
Setup#
!lamin init --storage ./use-cases-registries --schema bionty
Show code cell output
💡 connected lamindb: testuser1/use-cases-registries
import lamindb as ln
import bionty as bt
import gseapy as gp
bt.settings.organism = "human" # globally set organism
💡 connected lamindb: testuser1/use-cases-registries
Fetch GO pathways annotated with human genes using Enrichr#
First we fetch the “GO_Biological_Process_2023” pathways for humans using GSEApy which wraps GSEA and Enrichr.
go_bp = gp.get_library(name="GO_Biological_Process_2023", organism="Human")
print(f"Number of pathways {len(go_bp)}")
Number of pathways 5406
go_bp["ATF6-mediated Unfolded Protein Response (GO:0036500)"]
['MBTPS1', 'MBTPS2', 'XBP1', 'ATF6B', 'DDIT3', 'CREBZF']
Parse out the ontology_id from keys, convert into the format of {ontology_id: (name, genes)}
def parse_ontology_id_from_keys(key):
"""Parse out the ontology id.
"ATF6-mediated Unfolded Protein Response (GO:0036500)" -> ("GO:0036500", "ATF6-mediated Unfolded Protein Response")
"""
id = key.split(" ")[-1].replace("(", "").replace(")", "")
name = key.replace(f" ({id})", "")
return (id, name)
go_bp_parsed = {}
for key, genes in go_bp.items():
id, name = parse_ontology_id_from_keys(key)
go_bp_parsed[id] = (name, genes)
go_bp_parsed["GO:0036500"]
('ATF6-mediated Unfolded Protein Response',
['MBTPS1', 'MBTPS2', 'XBP1', 'ATF6B', 'DDIT3', 'CREBZF'])
Register pathway ontology in LaminDB#
bionty = bt.Pathway.public()
bionty
PublicOntology
Entity: Pathway
Organism: all
Source: go, 2023-05-10
#terms: 47514
📖 .df(): ontology reference table
🔎 .lookup(): autocompletion of terms
🎯 .search(): free text search of terms
✅ .validate(): strictly validate values
🧐 .inspect(): full inspection of values
👽 .standardize(): convert to standardized names
🪜 .diff(): difference between two versions
🔗 .to_pronto(): Pronto.Ontology object
Next, we register all the pathways and genes in LaminDB to finally link pathways to genes.
Register pathway terms#
To register the pathways we make use of .from_values
to directly parse the annotated GO pathway ontology IDs into LaminDB.
pathway_records = bt.Pathway.from_values(go_bp_parsed.keys(), bt.Pathway.ontology_id)
ln.save(pathway_records, parents=False) # not recursing through parents
Register gene symbols#
Similarly, we use .from_values
for all Pathway associated genes to register them with LaminDB.
all_genes = {g for genes in go_bp.values() for g in genes}
gene_records = bt.Gene.from_values(all_genes, bt.Gene.symbol)
Show code cell output
❗ ambiguous validation in Bionty for 1082 records: 'SCRT1', 'OR2A2', 'GPSM3', 'DUSP29', 'GPR179', 'NLGN2', 'PARN', 'DLL1', 'RAB6C', 'FAM120B', 'MEIOB', 'TRPV6', 'STK19', 'ARHGEF10', 'ZNF501', 'BTG3', 'RPS17', 'SCARF1', 'ACACA', 'CNOT10', ...
❗ did not create Gene records for 37 non-validated symbols: 'LOC102723475', 'DUX5', 'IGL', 'DGS2', 'DUX3', 'LOC100653049', 'FOXL3-OT1', 'TAS2R33', 'MTRNR2L3', 'TAS2R36', 'AZF1', 'LOC122513141', 'MDRV', 'SEPTIN14P20', 'MTRNR2L11', 'LOC102724159', 'MTRNR2L6', 'MTRNR2L10', 'LOC122539214', 'TRA', ...
gene_records[:3]
[Gene(uid='4wpUz2gejAIu', symbol='SLC2A3', ensembl_gene_id='ENSG00000059804', ncbi_gene_ids='6515', biotype='protein_coding', description='solute carrier family 2 member 3 ', synonyms='GLUT3', organism_id=1, public_source_id=9, created_by_id=1),
Gene(uid='1t0LHJvQTpn8', symbol='DDRGK1', ensembl_gene_id='ENSG00000198171', ncbi_gene_ids='65992', biotype='protein_coding', description='DDRGK domain containing 1 ', synonyms='DJ1187M17.3|C20ORF116|UFBP1', organism_id=1, public_source_id=9, created_by_id=1),
Gene(uid='1CPBwLGbn8B5', symbol='UCHL3', ensembl_gene_id='ENSG00000118939', ncbi_gene_ids='7347', biotype='protein_coding', description='ubiquitin C-terminal hydrolase L3 ', synonyms='', organism_id=1, public_source_id=9, created_by_id=1)]
ln.save(gene_records);
Link pathway to genes#
Now that we are tracking all pathways and genes records, we can link both of them to make the pathways even more queryable.
gene_records_ids = {record.symbol: record for record in gene_records}
for pathway_record in pathway_records:
pathway_genes = go_bp_parsed.get(pathway_record.ontology_id)[1]
pathway_genes_records = [gene_records_ids.get(gene) for gene in pathway_genes]
pathway_record.genes.set(pathway_genes_records)
Now genes are linked to pathways:
pathway_record.genes.list("symbol")
['CARD8', 'CARD18', 'XIAP', 'CAST', 'CST7']
Move on to the next analysis: Standardize metadata on-the-fly