Project flow#
LaminDB allows tracking data lineage on the entire project level.
Here, we walk through exemplified app uploads, pipelines & notebooks following Schmidt et al., 2022.
A CRISPR screen reading out a phenotypic endpoint on T cells is paired with scRNA-seq to generate insights into IFN-Ξ³ production.
These insights get linked back to the original data through the steps taken in the project to provide context for interpretation & future decision making.
More specifically: Why should I care about data flow?
Data flow tracks data sources & transformations to trace biological insights, verify experimental outcomes, meet regulatory standards, increase the robustness of research and optimize the feedback loop of team-wide learning iterations.
While tracking data flow is easier when itβs governed by deterministic pipelines, it becomes hard when itβs governed by interactive human-driven analyses.
LaminDB interfaces workflow mangers for the former and embraces the latter.
Setup#
Init a test instance:
!lamin init --storage ./mydata
Show code cell output
π‘ connected lamindb: testuser1/mydata
Import lamindb:
import lamindb as ln
from IPython.display import Image, display
π‘ connected lamindb: testuser1/mydata
Steps#
In the following, we walk through exemplified steps covering different types of transforms (Transform
).
Note
The full notebooks are in this repository.
App upload of phenotypic data #
Register data through app upload from wetlab by testuser1
:
# This function mimics the upload of artifacts via the UI
# In reality, you simply drag and drop files into the UI
def mock_upload_crispra_result_app():
ln.setup.login("testuser1")
transform = ln.Transform(name="Upload GWS CRISPRa result", type="upload")
ln.track(transform=transform)
output_path = ln.core.datasets.schmidt22_crispra_gws_IFNG(ln.settings.storage)
output_file = ln.Artifact(
output_path, description="Raw data of schmidt22 crispra GWS"
)
output_file.save()
mock_upload_crispra_result_app()
Show code cell output
π‘ saved: Transform(uid='NNxgWtM60QdF9PiE', name='Upload GWS CRISPRa result', type='upload', updated_at=2024-04-24 12:52:13 UTC, created_by_id=1)
π‘ saved: Run(uid='cO5kE9Ik1qczOL27EKfA', transform_id=1, created_by_id=1)
Hit identification in notebook #
Access, transform & register data in drylab by testuser2
in notebook hit-identification.
Show code cell content
# the following mimics the integrated analysis notebook
# In reality, you would execute inside the notebook
import nbproject_test
from pathlib import Path
cwd = Path.cwd()
nbproject_test.execute_notebooks(cwd / "project-flow-scripts/hit-identification.ipynb", write=True)
Executing notebooks in /home/runner/work/lamin-usecases/lamin-usecases/docs/project-flow-scripts/hit-identification.ipynb
Scheduled: ['hit-identification']
hit-identification
β (5.051s)
Total time: 5.053s
Inspect data flow:
artifact = ln.Artifact.filter(description="hits from schmidt22 crispra GWS").one()
artifact.view_lineage()
Sequencer upload #
Upload files from sequencer via script chromium_10x_upload.py:
!python project-flow-scripts/chromium_10x_upload.py
Show code cell output
π‘ connected lamindb: testuser1/mydata
π‘ saved: Transform(uid='qCJPkOuZAi9q5zKv', name='chromium_10x_upload.py', key='chromium_10x_upload.py', version='1', type='script', updated_at=2024-04-24 12:52:22 UTC, created_by_id=1)
π‘ saved: Run(uid='hdChIaopqbQaStIgJLig', transform_id=3, created_by_id=1)
β
saved transform.source_code: Artifact(uid='R31ngN8Ge3O4rya2itP1', suffix='.py', description='Source of transform qCJPkOuZAi9q5zKv', version='1', size=474, hash='o-QoKgEZGxbk5oBtcAKoWw', hash_type='md5', visibility=0, key_is_virtual=True, updated_at=2024-04-24 12:52:22 UTC, storage_id=1, created_by_id=1)
β
saved run.environment: Artifact(uid='jM8RFEuWrSa3SveR4saV', suffix='.txt', description='requirements.txt', size=3429, hash='zifvwWK3ZlTccmUo2WTBzw', hash_type='md5', visibility=0, key_is_virtual=True, updated_at=2024-04-24 12:52:22 UTC, storage_id=1, created_by_id=1)
scRNA-seq bioinformatics pipeline #
Process uploaded files using a script or workflow manager: Pipelines and obtain 3 output files in a directory filtered_feature_bc_matrix/
:
!python project-flow-scripts/cellranger.py
Show code cell output
π‘ connected lamindb: testuser1/mydata
π‘ saved: Transform(uid='r0Niec8uSXf4eFf7', name='Cell Ranger', version='7.2.0', type='pipeline', reference='https://www.10xgenomics.com/support/software/cell-ranger/7.2', updated_at=2024-04-24 12:52:25 UTC, created_by_id=2)
π‘ saved: Run(uid='iZ2m9cxbnQQ5pRT8cynl', transform_id=4, created_by_id=2)
β this creates one artifact per file in the directory - you might simply call ln.Artifact(dir) to get one artifact for the entire directory
!python project-flow-scripts/postprocess_cellranger.py
Show code cell output
π‘ connected lamindb: testuser1/mydata
π‘ saved: Transform(uid='YqmbO6oMXjRj65cN', name='postprocess_cellranger.py', key='postprocess_cellranger.py', version='2', type='script', updated_at=2024-04-24 12:52:27 UTC, created_by_id=2)
π‘ saved: Run(uid='UbkHVEJH3mQf9c3CRBm3', transform_id=5, created_by_id=2)
β
saved transform.source_code: Artifact(uid='UW9lOvdl3sUuvwRgRoIL', suffix='.py', description='Source of transform YqmbO6oMXjRj65cN', version='2', size=495, hash='iLSbWXZ-j7pkIgzO0i6c0w', hash_type='md5', visibility=0, key_is_virtual=True, updated_at=2024-04-24 12:52:27 UTC, storage_id=1, created_by_id=2)
β returning existing artifact with same hash: Artifact(uid='jM8RFEuWrSa3SveR4saV', suffix='.txt', description='requirements.txt', size=3429, hash='zifvwWK3ZlTccmUo2WTBzw', hash_type='md5', visibility=0, key_is_virtual=True, updated_at=2024-04-24 12:52:22 UTC, storage_id=1, created_by_id=1)
β
saved run.environment: Artifact(uid='jM8RFEuWrSa3SveR4saV', suffix='.txt', description='requirements.txt', size=3429, hash='zifvwWK3ZlTccmUo2WTBzw', hash_type='md5', visibility=0, key_is_virtual=True, updated_at=2024-04-24 12:52:22 UTC, storage_id=1, created_by_id=1)
Inspect data flow:
output_file = ln.Artifact.filter(description="perturbseq counts").one()
output_file.view_lineage()
Integrate scRNA-seq & phenotypic data #
Integrate data in notebook integrated-analysis.
Show code cell content
# the following mimics the integrated analysis notebook
# In reality, you would execute inside the notebook
nbproject_test.execute_notebooks(cwd / "project-flow-scripts/integrated-analysis.ipynb", write=True)
Executing notebooks in /home/runner/work/lamin-usecases/lamin-usecases/docs/project-flow-scripts/integrated-analysis.ipynb
Scheduled: ['integrated-analysis']
integrated-analysis
β (5.419s)
Total time: 5.420s
Review results#
Letβs load one of the plots:
# track the current notebook as transform
ln.settings.transform.stem_uid = "1LCd8kco9lZU"
ln.settings.transform.version = "0"
ln.track()
π‘ notebook imports: ipython==8.23.0 lamindb==0.70.4 nbproject_test==0.5.1
π‘ saved: Transform(uid='1LCd8kco9lZU6K79', name='Project flow', key='project-flow', version='0', type='notebook', updated_at=2024-04-24 12:52:34 UTC, created_by_id=1)
π‘ saved: Run(uid='gdk2AQ8HsxXKnmdqQXOz', transform_id=7, created_by_id=1)
artifact = ln.Artifact.filter(key__contains="figures/matrixplot").one()
artifact.cache()
Show code cell output
PosixUPath('/home/runner/work/lamin-usecases/lamin-usecases/docs/mydata/.lamindb/IheHCqUsQQDHK2AipvsS.png')
display(Image(filename=artifact.path))
We see that the image artifact is tracked as an input of the current notebook. The input is highlighted, the notebook follows at the bottom:
artifact.view_lineage()
Alternatively, we can also look at the sequence of transforms:
transform = ln.Transform.search("Project flow", return_queryset=True).first()
transform.parents.df()
uid | name | key | version | description | type | latest_report_id | source_code_id | reference | reference_type | created_at | updated_at | created_by_id | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
id | |||||||||||||
6 | lB3IyPLQSmvt5zKv | Perform single cell analysis, integrate with C... | integrated-analysis | 1 | None | notebook | None | None | None | None | 2024-04-24 12:52:33.059364+00:00 | 2024-04-24 12:52:33.059388+00:00 | 2 |
transform.view_parents()
Understand runs#
We tracked pipeline and notebook runs through run_context
, which stores a Transform
and a Run
record as a global context.
Artifact
objects are the inputs and outputs of runs.
What if I donβt want a global context?
Sometimes, we donβt want to create a global run context but manually pass a run when creating an artifact:
run = ln.Run(transform=transform)
ln.Artifact(filepath, run=run)
When does an artifact appear as a run input?
When accessing an artifact via cache()
, load()
or backed()
, two things happen:
The current run gets added to
artifact.input_of
The transform of that artifact gets added as a parent of the current transform
You can then switch off auto-tracking of run inputs if you set ln.settings.track_run_inputs = False
: Can I disable tracking run inputs?
You can also track run inputs on a case by case basis via is_run_input=True
, e.g., here:
artifact.load(is_run_input=True)
Query by provenance#
We can query or search for the notebook that created the artifact:
transform = ln.Transform.search("GWS CRIPSRa analysis", return_queryset=True).first()
And then find all the artifacts created by that notebook:
ln.Artifact.filter(transform=transform).df()
uid | storage_id | key | suffix | accessor | description | version | size | hash | hash_type | n_objects | n_observations | transform_id | run_id | visibility | key_is_virtual | created_at | updated_at | created_by_id | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
id | |||||||||||||||||||
2 | pd8LHSUE41sDPHSOGOTw | 1 | None | .parquet | DataFrame | hits from schmidt22 crispra GWS | None | 18368 | PihzyuN-FWc-ld6ioxAuPg | md5 | None | None | 2 | 2 | 1 | True | 2024-04-24 12:52:19.515978+00:00 | 2024-04-24 12:52:19.516000+00:00 | 1 |
Which transform ingested a given artifact?
artifact = ln.Artifact.filter().first()
artifact.transform
Transform(uid='NNxgWtM60QdF9PiE', name='Upload GWS CRISPRa result', type='upload', updated_at=2024-04-24 12:52:13 UTC, created_by_id=1)
And which user?
artifact.created_by
User(uid='DzTjkKse', handle='testuser1', name='Test User1', updated_at=2024-04-24 12:52:22 UTC)
Which transforms were created by a given user?
users = ln.User.lookup()
ln.Transform.filter(created_by=users.testuser1).df()
uid | name | key | version | description | type | latest_report_id | source_code_id | reference | reference_type | created_at | updated_at | created_by_id | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
id | |||||||||||||
1 | NNxgWtM60QdF9PiE | Upload GWS CRISPRa result | None | None | None | upload | None | NaN | None | None | 2024-04-24 12:52:13.083408+00:00 | 2024-04-24 12:52:13.083427+00:00 | 1 |
2 | T0T28btuB0PG5zKv | GWS CRIPSRa analysis | hit-identification | 1 | None | notebook | None | NaN | None | None | 2024-04-24 12:52:19.019748+00:00 | 2024-04-24 12:52:19.019782+00:00 | 1 |
3 | qCJPkOuZAi9q5zKv | chromium_10x_upload.py | chromium_10x_upload.py | 1 | None | script | None | 3.0 | None | None | 2024-04-24 12:52:22.171785+00:00 | 2024-04-24 12:52:22.621308+00:00 | 1 |
7 | 1LCd8kco9lZU6K79 | Project flow | project-flow | 0 | None | notebook | None | NaN | None | None | 2024-04-24 12:52:34.897453+00:00 | 2024-04-24 12:52:34.897496+00:00 | 1 |
Which notebooks were created by a given user?
ln.Transform.filter(created_by=users.testuser1, type="notebook").df()
uid | name | key | version | description | type | latest_report_id | source_code_id | reference | reference_type | created_at | updated_at | created_by_id | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
id | |||||||||||||
2 | T0T28btuB0PG5zKv | GWS CRIPSRa analysis | hit-identification | 1 | None | notebook | None | None | None | None | 2024-04-24 12:52:19.019748+00:00 | 2024-04-24 12:52:19.019782+00:00 | 1 |
7 | 1LCd8kco9lZU6K79 | Project flow | project-flow | 0 | None | notebook | None | None | None | None | 2024-04-24 12:52:34.897453+00:00 | 2024-04-24 12:52:34.897496+00:00 | 1 |
We can also view all recent additions to the entire database:
ln.view()
Show code cell output
Artifact
uid | storage_id | key | suffix | accessor | description | version | size | hash | hash_type | n_objects | n_observations | transform_id | run_id | visibility | key_is_virtual | created_at | updated_at | created_by_id | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
id | |||||||||||||||||||
13 | IheHCqUsQQDHK2AipvsS | 1 | figures/matrixplot_fig2_score-wgs-hits-per-clu... | .png | None | None | None | 28814 | 8zXF_cVwaZnfhmrLbt_0kA | md5 | None | None | 6 | 6 | 1 | True | 2024-04-24 12:52:34.019492+00:00 | 2024-04-24 12:52:34.019517+00:00 | 2 |
12 | rLpx8GbcnGMmheavsHeX | 1 | figures/umap_fig1_score-wgs-hits.png | .png | None | None | None | 118999 | DCFDLUMF-UohaBvkThn0mA | md5 | None | None | 6 | 6 | 1 | True | 2024-04-24 12:52:33.807092+00:00 | 2024-04-24 12:52:33.807115+00:00 | 2 |
11 | DGYZavaUjcxatytOHuQN | 1 | schmidt22_perturbseq.h5ad | .h5ad | AnnData | perturbseq counts | None | 20659936 | la7EvqEUMDlug9-rpw-udA | md5 | None | None | 5 | 5 | 1 | False | 2024-04-24 12:52:28.833062+00:00 | 2024-04-24 12:52:28.833092+00:00 | 2 |
9 | yDGCVUS5OKhDm3miBoCp | 1 | perturbseq/filtered_feature_bc_matrix/matrix.m... | .mtx.gz | None | None | None | 6 | iD0GLFCxZKP89IxyRWczKg | md5 | None | None | 4 | 4 | 1 | False | 2024-04-24 12:52:25.493093+00:00 | 2024-04-24 12:52:25.493111+00:00 | 2 |
8 | TJvmw13ny1tyoy3OjN1u | 1 | perturbseq/filtered_feature_bc_matrix/features... | .tsv.gz | None | None | None | 6 | xE_thCDfZxU5csA1MBYgsQ | md5 | None | None | 4 | 4 | 1 | False | 2024-04-24 12:52:25.492520+00:00 | 2024-04-24 12:52:25.492538+00:00 | 2 |
7 | oYYDUxRR5XC5DRofkGtH | 1 | perturbseq/filtered_feature_bc_matrix/barcodes... | .tsv.gz | None | None | None | 6 | gmmGlYUzlzFycCWxYP03kQ | md5 | None | None | 4 | 4 | 1 | False | 2024-04-24 12:52:25.491718+00:00 | 2024-04-24 12:52:25.491741+00:00 | 2 |
6 | lLinsKokQM9DZcbYnUX8 | 1 | fastq/perturbseq_R2_001.fastq.gz | .fastq.gz | None | None | None | 6 | pLg56d15p326_4hVQ5V5kA | md5 | None | None | 3 | 3 | 1 | False | 2024-04-24 12:52:22.629889+00:00 | 2024-04-24 12:52:22.629907+00:00 | 1 |
Run
uid | transform_id | started_at | finished_at | created_by_id | json | report_id | environment_id | is_consecutive | reference | reference_type | created_at | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
id | ||||||||||||
1 | cO5kE9Ik1qczOL27EKfA | 1 | 2024-04-24 12:52:13.086835+00:00 | NaT | 1 | None | None | NaN | True | None | None | 2024-04-24 12:52:13.087021+00:00 |
2 | 01a5r0MpUoGkCQ9bHEY1 | 2 | 2024-04-24 12:52:19.025252+00:00 | NaT | 1 | None | None | NaN | True | None | None | 2024-04-24 12:52:19.025351+00:00 |
3 | hdChIaopqbQaStIgJLig | 3 | 2024-04-24 12:52:22.174179+00:00 | 2024-04-24 12:52:22.631590+00:00 | 1 | None | None | 4.0 | None | None | None | 2024-04-24 12:52:22.174302+00:00 |
4 | iZ2m9cxbnQQ5pRT8cynl | 4 | 2024-04-24 12:52:25.035988+00:00 | NaT | 2 | None | None | NaN | None | None | None | 2024-04-24 12:52:25.036082+00:00 |
5 | UbkHVEJH3mQf9c3CRBm3 | 5 | 2024-04-24 12:52:27.061074+00:00 | NaT | 2 | None | None | 4.0 | None | None | None | 2024-04-24 12:52:27.061203+00:00 |
6 | orCfDzWhImfghDC8sVmL | 6 | 2024-04-24 12:52:33.065662+00:00 | NaT | 2 | None | None | NaN | True | None | None | 2024-04-24 12:52:33.065847+00:00 |
7 | gdk2AQ8HsxXKnmdqQXOz | 7 | 2024-04-24 12:52:34.903147+00:00 | NaT | 1 | None | None | NaN | True | None | None | 2024-04-24 12:52:34.903322+00:00 |
Storage
uid | root | description | type | region | created_at | updated_at | created_by_id | |
---|---|---|---|---|---|---|---|---|
id | ||||||||
1 | x7bwwJBc | /home/runner/work/lamin-usecases/lamin-usecase... | None | local | None | 2024-04-24 12:52:10.983099+00:00 | 2024-04-24 12:52:10.983118+00:00 | 1 |
Transform
uid | name | key | version | description | type | latest_report_id | source_code_id | reference | reference_type | created_at | updated_at | created_by_id | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
id | |||||||||||||
7 | 1LCd8kco9lZU6K79 | Project flow | project-flow | 0 | None | notebook | None | NaN | None | None | 2024-04-24 12:52:34.897453+00:00 | 2024-04-24 12:52:34.897496+00:00 | 1 |
6 | lB3IyPLQSmvt5zKv | Perform single cell analysis, integrate with C... | integrated-analysis | 1 | None | notebook | None | NaN | None | None | 2024-04-24 12:52:33.059364+00:00 | 2024-04-24 12:52:33.059388+00:00 | 2 |
5 | YqmbO6oMXjRj65cN | postprocess_cellranger.py | postprocess_cellranger.py | 2 | None | script | None | 10.0 | None | None | 2024-04-24 12:52:27.057934+00:00 | 2024-04-24 12:52:27.511308+00:00 | 2 |
4 | r0Niec8uSXf4eFf7 | Cell Ranger | None | 7.2.0 | None | pipeline | None | NaN | https://www.10xgenomics.com/support/software/c... | None | 2024-04-24 12:52:25.033451+00:00 | 2024-04-24 12:52:25.033470+00:00 | 2 |
3 | qCJPkOuZAi9q5zKv | chromium_10x_upload.py | chromium_10x_upload.py | 1 | None | script | None | 3.0 | None | None | 2024-04-24 12:52:22.171785+00:00 | 2024-04-24 12:52:22.621308+00:00 | 1 |
2 | T0T28btuB0PG5zKv | GWS CRIPSRa analysis | hit-identification | 1 | None | notebook | None | NaN | None | None | 2024-04-24 12:52:19.019748+00:00 | 2024-04-24 12:52:19.019782+00:00 | 1 |
1 | NNxgWtM60QdF9PiE | Upload GWS CRISPRa result | None | None | None | upload | None | NaN | None | None | 2024-04-24 12:52:13.083408+00:00 | 2024-04-24 12:52:13.083427+00:00 | 1 |
User
uid | handle | name | created_at | updated_at | |
---|---|---|---|---|---|
id | |||||
2 | bKeW4T6E | testuser2 | Test User2 | 2024-04-24 12:52:25.023934+00:00 | 2024-04-24 12:52:25.023970+00:00 |
1 | DzTjkKse | testuser1 | Test User1 | 2024-04-24 12:52:10.980214+00:00 | 2024-04-24 12:52:22.036115+00:00 |
Show code cell content
!lamin login testuser1
!lamin delete --force mydata
!rm -r ./mydata
β
logged in with email testuser1@lamin.ai (uid: DzTjkKse)
Traceback (most recent call last):
File "/opt/hostedtoolcache/Python/3.10.14/x64/bin/lamin", line 8, in <module>
sys.exit(main())
File "/opt/hostedtoolcache/Python/3.10.14/x64/lib/python3.10/site-packages/click/core.py", line 1157, in __call__
return self.main(*args, **kwargs)
File "/opt/hostedtoolcache/Python/3.10.14/x64/lib/python3.10/site-packages/rich_click/rich_command.py", line 126, in main
rv = self.invoke(ctx)
File "/opt/hostedtoolcache/Python/3.10.14/x64/lib/python3.10/site-packages/click/core.py", line 1688, in invoke
return _process_result(sub_ctx.command.invoke(sub_ctx))
File "/opt/hostedtoolcache/Python/3.10.14/x64/lib/python3.10/site-packages/click/core.py", line 1434, in invoke
return ctx.invoke(self.callback, **ctx.params)
File "/opt/hostedtoolcache/Python/3.10.14/x64/lib/python3.10/site-packages/click/core.py", line 783, in invoke
return __callback(*args, **kwargs)
File "/opt/hostedtoolcache/Python/3.10.14/x64/lib/python3.10/site-packages/lamin_cli/__main__.py", line 103, in delete
return delete(instance, force=force)
File "/opt/hostedtoolcache/Python/3.10.14/x64/lib/python3.10/site-packages/lamindb_setup/_delete.py", line 130, in delete
n_objects = check_storage_is_empty(
File "/opt/hostedtoolcache/Python/3.10.14/x64/lib/python3.10/site-packages/lamindb_setup/core/upath.py", line 720, in check_storage_is_empty
raise InstanceNotEmpty(message)
lamindb_setup.core.upath.InstanceNotEmpty: Storage location contains 27 objects (2 ignored) - delete them prior to deleting the instance
['/home/runner/work/lamin-usecases/lamin-usecases/docs/mydata/.lamindb/IheHCqUsQQDHK2AipvsS.png', '/home/runner/work/lamin-usecases/lamin-usecases/docs/mydata/.lamindb/R31ngN8Ge3O4rya2itP1.py', '/home/runner/work/lamin-usecases/lamin-usecases/docs/mydata/.lamindb/UW9lOvdl3sUuvwRgRoIL.py', '/home/runner/work/lamin-usecases/lamin-usecases/docs/mydata/.lamindb/_is_initialized', '/home/runner/work/lamin-usecases/lamin-usecases/docs/mydata/.lamindb/jM8RFEuWrSa3SveR4saV.txt', '/home/runner/work/lamin-usecases/lamin-usecases/docs/mydata/.lamindb/pd8LHSUE41sDPHSOGOTw.parquet', '/home/runner/work/lamin-usecases/lamin-usecases/docs/mydata/.lamindb/rLpx8GbcnGMmheavsHeX.png', '/home/runner/work/lamin-usecases/lamin-usecases/docs/mydata/bad64064a38a5d18ae1654872904d661.lndb', '/home/runner/work/lamin-usecases/lamin-usecases/docs/mydata/fastq/perturbseq_R1_001.fastq.gz', '/home/runner/work/lamin-usecases/lamin-usecases/docs/mydata/fastq/perturbseq_R2_001.fastq.gz', '/home/runner/work/lamin-usecases/lamin-usecases/docs/mydata/perturbseq/analysis/analysis.csv', '/home/runner/work/lamin-usecases/lamin-usecases/docs/mydata/perturbseq/cloupe.cloupe', '/home/runner/work/lamin-usecases/lamin-usecases/docs/mydata/perturbseq/filtered_feature_bc_matrix.h5', '/home/runner/work/lamin-usecases/lamin-usecases/docs/mydata/perturbseq/filtered_feature_bc_matrix/barcodes.tsv.gz', '/home/runner/work/lamin-usecases/lamin-usecases/docs/mydata/perturbseq/filtered_feature_bc_matrix/features.tsv.gz', '/home/runner/work/lamin-usecases/lamin-usecases/docs/mydata/perturbseq/filtered_feature_bc_matrix/matrix.mtx.gz', '/home/runner/work/lamin-usecases/lamin-usecases/docs/mydata/perturbseq/metrics_summary.csv', '/home/runner/work/lamin-usecases/lamin-usecases/docs/mydata/perturbseq/molecule_info.h5', '/home/runner/work/lamin-usecases/lamin-usecases/docs/mydata/perturbseq/possorted_genome_bam.bam', '/home/runner/work/lamin-usecases/lamin-usecases/docs/mydata/perturbseq/possorted_genome_bam.bam.bai', '/home/runner/work/lamin-usecases/lamin-usecases/docs/mydata/perturbseq/raw_feature_bc_matrix.h5', '/home/runner/work/lamin-usecases/lamin-usecases/docs/mydata/perturbseq/raw_feature_bc_matrix/barcodes.tsv.gz', '/home/runner/work/lamin-usecases/lamin-usecases/docs/mydata/perturbseq/raw_feature_bc_matrix/features.tsv.gz', '/home/runner/work/lamin-usecases/lamin-usecases/docs/mydata/perturbseq/raw_feature_bc_matrix/matrix.mtx.gz', '/home/runner/work/lamin-usecases/lamin-usecases/docs/mydata/perturbseq/web_summary.html', '/home/runner/work/lamin-usecases/lamin-usecases/docs/mydata/schmidt22-crispra-gws-IFNG.csv', '/home/runner/work/lamin-usecases/lamin-usecases/docs/mydata/schmidt22_perturbseq.h5ad']