Jupyter Notebook Binder

Project flow#

LaminDB allows tracking data lineage on the entire project level.

Here, we walk through exemplified app uploads, pipelines & notebooks following Schmidt et al., 2022.

A CRISPR screen reading out a phenotypic endpoint on T cells is paired with scRNA-seq to generate insights into IFN-Ξ³ production.

These insights get linked back to the original data through the steps taken in the project to provide context for interpretation & future decision making.

More specifically: Why should I care about data flow?

Data flow tracks data sources & transformations to trace biological insights, verify experimental outcomes, meet regulatory standards, increase the robustness of research and optimize the feedback loop of team-wide learning iterations.

While tracking data flow is easier when it’s governed by deterministic pipelines, it becomes hard when it’s governed by interactive human-driven analyses.

LaminDB interfaces workflow mangers for the former and embraces the latter.

Setup#

Init a test instance:

!lamin init --storage ./mydata
Hide code cell output
πŸ’‘ connected lamindb: testuser1/mydata

Import lamindb:

import lamindb as ln
from IPython.display import Image, display
πŸ’‘ connected lamindb: testuser1/mydata

Steps#

In the following, we walk through exemplified steps covering different types of transforms (Transform).

Note

The full notebooks are in this repository.

App upload of phenotypic data #

Register data through app upload from wetlab by testuser1:

# This function mimics the upload of artifacts via the UI
# In reality, you simply drag and drop files into the UI
def mock_upload_crispra_result_app():
    ln.setup.login("testuser1")
    transform = ln.Transform(name="Upload GWS CRISPRa result", type="upload")
    ln.track(transform=transform)
    output_path = ln.core.datasets.schmidt22_crispra_gws_IFNG(ln.settings.storage)
    output_file = ln.Artifact(
        output_path, description="Raw data of schmidt22 crispra GWS"
    )
    output_file.save()

mock_upload_crispra_result_app()
Hide code cell output
πŸ’‘ saved: Transform(uid='NNxgWtM60QdF9PiE', name='Upload GWS CRISPRa result', type='upload', updated_at=2024-04-24 12:52:13 UTC, created_by_id=1)
πŸ’‘ saved: Run(uid='cO5kE9Ik1qczOL27EKfA', transform_id=1, created_by_id=1)

Hit identification in notebook #

Access, transform & register data in drylab by testuser2 in notebook hit-identification.

Hide code cell content
# the following mimics the integrated analysis notebook
# In reality, you would execute inside the notebook
import nbproject_test
from pathlib import Path

cwd = Path.cwd()
nbproject_test.execute_notebooks(cwd / "project-flow-scripts/hit-identification.ipynb", write=True)
Executing notebooks in /home/runner/work/lamin-usecases/lamin-usecases/docs/project-flow-scripts/hit-identification.ipynb
Scheduled: ['hit-identification']
hit-identification 
βœ“ (5.051s)
Total time: 5.053s

Inspect data flow:

artifact = ln.Artifact.filter(description="hits from schmidt22 crispra GWS").one()
artifact.view_lineage()
_images/22bd71beaf13905394ecf0997e88c4a2891c60ffa016c6164095e7d7289f0924.svg

Sequencer upload #

Upload files from sequencer via script chromium_10x_upload.py:

!python project-flow-scripts/chromium_10x_upload.py
Hide code cell output
πŸ’‘ connected lamindb: testuser1/mydata
πŸ’‘ saved: Transform(uid='qCJPkOuZAi9q5zKv', name='chromium_10x_upload.py', key='chromium_10x_upload.py', version='1', type='script', updated_at=2024-04-24 12:52:22 UTC, created_by_id=1)
πŸ’‘ saved: Run(uid='hdChIaopqbQaStIgJLig', transform_id=3, created_by_id=1)
βœ… saved transform.source_code: Artifact(uid='R31ngN8Ge3O4rya2itP1', suffix='.py', description='Source of transform qCJPkOuZAi9q5zKv', version='1', size=474, hash='o-QoKgEZGxbk5oBtcAKoWw', hash_type='md5', visibility=0, key_is_virtual=True, updated_at=2024-04-24 12:52:22 UTC, storage_id=1, created_by_id=1)
βœ… saved run.environment: Artifact(uid='jM8RFEuWrSa3SveR4saV', suffix='.txt', description='requirements.txt', size=3429, hash='zifvwWK3ZlTccmUo2WTBzw', hash_type='md5', visibility=0, key_is_virtual=True, updated_at=2024-04-24 12:52:22 UTC, storage_id=1, created_by_id=1)

scRNA-seq bioinformatics pipeline #

Process uploaded files using a script or workflow manager: Pipelines and obtain 3 output files in a directory filtered_feature_bc_matrix/:

cellranger.py

!python project-flow-scripts/cellranger.py
Hide code cell output
πŸ’‘ connected lamindb: testuser1/mydata
πŸ’‘ saved: Transform(uid='r0Niec8uSXf4eFf7', name='Cell Ranger', version='7.2.0', type='pipeline', reference='https://www.10xgenomics.com/support/software/cell-ranger/7.2', updated_at=2024-04-24 12:52:25 UTC, created_by_id=2)
πŸ’‘ saved: Run(uid='iZ2m9cxbnQQ5pRT8cynl', transform_id=4, created_by_id=2)
❗ this creates one artifact per file in the directory - you might simply call ln.Artifact(dir) to get one artifact for the entire directory

postprocess_cellranger.py

!python project-flow-scripts/postprocess_cellranger.py
Hide code cell output
πŸ’‘ connected lamindb: testuser1/mydata
πŸ’‘ saved: Transform(uid='YqmbO6oMXjRj65cN', name='postprocess_cellranger.py', key='postprocess_cellranger.py', version='2', type='script', updated_at=2024-04-24 12:52:27 UTC, created_by_id=2)
πŸ’‘ saved: Run(uid='UbkHVEJH3mQf9c3CRBm3', transform_id=5, created_by_id=2)
βœ… saved transform.source_code: Artifact(uid='UW9lOvdl3sUuvwRgRoIL', suffix='.py', description='Source of transform YqmbO6oMXjRj65cN', version='2', size=495, hash='iLSbWXZ-j7pkIgzO0i6c0w', hash_type='md5', visibility=0, key_is_virtual=True, updated_at=2024-04-24 12:52:27 UTC, storage_id=1, created_by_id=2)
❗ returning existing artifact with same hash: Artifact(uid='jM8RFEuWrSa3SveR4saV', suffix='.txt', description='requirements.txt', size=3429, hash='zifvwWK3ZlTccmUo2WTBzw', hash_type='md5', visibility=0, key_is_virtual=True, updated_at=2024-04-24 12:52:22 UTC, storage_id=1, created_by_id=1)
βœ… saved run.environment: Artifact(uid='jM8RFEuWrSa3SveR4saV', suffix='.txt', description='requirements.txt', size=3429, hash='zifvwWK3ZlTccmUo2WTBzw', hash_type='md5', visibility=0, key_is_virtual=True, updated_at=2024-04-24 12:52:22 UTC, storage_id=1, created_by_id=1)

Inspect data flow:

output_file = ln.Artifact.filter(description="perturbseq counts").one()
output_file.view_lineage()
_images/cf165034b61d848b147b1c2f163aba4875857c0fa6c8cbc5948e894a95151161.svg

Integrate scRNA-seq & phenotypic data #

Integrate data in notebook integrated-analysis.

Hide code cell content
# the following mimics the integrated analysis notebook
# In reality, you would execute inside the notebook
nbproject_test.execute_notebooks(cwd / "project-flow-scripts/integrated-analysis.ipynb", write=True)
Executing notebooks in /home/runner/work/lamin-usecases/lamin-usecases/docs/project-flow-scripts/integrated-analysis.ipynb
Scheduled: ['integrated-analysis']
integrated-analysis 
βœ“ (5.419s)
Total time: 5.420s

Review results#

Let’s load one of the plots:

# track the current notebook as transform
ln.settings.transform.stem_uid = "1LCd8kco9lZU"
ln.settings.transform.version = "0"
ln.track()
πŸ’‘ notebook imports: ipython==8.23.0 lamindb==0.70.4 nbproject_test==0.5.1
πŸ’‘ saved: Transform(uid='1LCd8kco9lZU6K79', name='Project flow', key='project-flow', version='0', type='notebook', updated_at=2024-04-24 12:52:34 UTC, created_by_id=1)
πŸ’‘ saved: Run(uid='gdk2AQ8HsxXKnmdqQXOz', transform_id=7, created_by_id=1)
artifact = ln.Artifact.filter(key__contains="figures/matrixplot").one()
artifact.cache()
Hide code cell output
PosixUPath('/home/runner/work/lamin-usecases/lamin-usecases/docs/mydata/.lamindb/IheHCqUsQQDHK2AipvsS.png')
display(Image(filename=artifact.path))
_images/441ad205ac0103f4b082eb21b8abb0d8df6460d4baa3bb09f60581a127bdf496.png

We see that the image artifact is tracked as an input of the current notebook. The input is highlighted, the notebook follows at the bottom:

artifact.view_lineage()
_images/379e3dacc0044b707b0902213675762749f75c8a33c0f40004078cc2cac0e861.svg

Alternatively, we can also look at the sequence of transforms:

transform = ln.Transform.search("Project flow", return_queryset=True).first()
transform.parents.df()
uid name key version description type latest_report_id source_code_id reference reference_type created_at updated_at created_by_id
id
6 lB3IyPLQSmvt5zKv Perform single cell analysis, integrate with C... integrated-analysis 1 None notebook None None None None 2024-04-24 12:52:33.059364+00:00 2024-04-24 12:52:33.059388+00:00 2
transform.view_parents()
_images/3c7a496c7aba1825cf9fd79ab0550f52fac67c415937b9708cc5316e4f88ae0b.svg

Understand runs#

We tracked pipeline and notebook runs through run_context, which stores a Transform and a Run record as a global context.

Artifact objects are the inputs and outputs of runs.

What if I don’t want a global context?

Sometimes, we don’t want to create a global run context but manually pass a run when creating an artifact:

run = ln.Run(transform=transform)
ln.Artifact(filepath, run=run)
When does an artifact appear as a run input?

When accessing an artifact via cache(), load() or backed(), two things happen:

  1. The current run gets added to artifact.input_of

  2. The transform of that artifact gets added as a parent of the current transform

You can then switch off auto-tracking of run inputs if you set ln.settings.track_run_inputs = False: Can I disable tracking run inputs?

You can also track run inputs on a case by case basis via is_run_input=True, e.g., here:

artifact.load(is_run_input=True)

Query by provenance#

We can query or search for the notebook that created the artifact:

transform = ln.Transform.search("GWS CRIPSRa analysis", return_queryset=True).first()

And then find all the artifacts created by that notebook:

ln.Artifact.filter(transform=transform).df()
uid storage_id key suffix accessor description version size hash hash_type n_objects n_observations transform_id run_id visibility key_is_virtual created_at updated_at created_by_id
id
2 pd8LHSUE41sDPHSOGOTw 1 None .parquet DataFrame hits from schmidt22 crispra GWS None 18368 PihzyuN-FWc-ld6ioxAuPg md5 None None 2 2 1 True 2024-04-24 12:52:19.515978+00:00 2024-04-24 12:52:19.516000+00:00 1

Which transform ingested a given artifact?

artifact = ln.Artifact.filter().first()
artifact.transform
Transform(uid='NNxgWtM60QdF9PiE', name='Upload GWS CRISPRa result', type='upload', updated_at=2024-04-24 12:52:13 UTC, created_by_id=1)

And which user?

artifact.created_by
User(uid='DzTjkKse', handle='testuser1', name='Test User1', updated_at=2024-04-24 12:52:22 UTC)

Which transforms were created by a given user?

users = ln.User.lookup()
ln.Transform.filter(created_by=users.testuser1).df()
uid name key version description type latest_report_id source_code_id reference reference_type created_at updated_at created_by_id
id
1 NNxgWtM60QdF9PiE Upload GWS CRISPRa result None None None upload None NaN None None 2024-04-24 12:52:13.083408+00:00 2024-04-24 12:52:13.083427+00:00 1
2 T0T28btuB0PG5zKv GWS CRIPSRa analysis hit-identification 1 None notebook None NaN None None 2024-04-24 12:52:19.019748+00:00 2024-04-24 12:52:19.019782+00:00 1
3 qCJPkOuZAi9q5zKv chromium_10x_upload.py chromium_10x_upload.py 1 None script None 3.0 None None 2024-04-24 12:52:22.171785+00:00 2024-04-24 12:52:22.621308+00:00 1
7 1LCd8kco9lZU6K79 Project flow project-flow 0 None notebook None NaN None None 2024-04-24 12:52:34.897453+00:00 2024-04-24 12:52:34.897496+00:00 1

Which notebooks were created by a given user?

ln.Transform.filter(created_by=users.testuser1, type="notebook").df()
uid name key version description type latest_report_id source_code_id reference reference_type created_at updated_at created_by_id
id
2 T0T28btuB0PG5zKv GWS CRIPSRa analysis hit-identification 1 None notebook None None None None 2024-04-24 12:52:19.019748+00:00 2024-04-24 12:52:19.019782+00:00 1
7 1LCd8kco9lZU6K79 Project flow project-flow 0 None notebook None None None None 2024-04-24 12:52:34.897453+00:00 2024-04-24 12:52:34.897496+00:00 1

We can also view all recent additions to the entire database:

ln.view()
Hide code cell output
Artifact
uid storage_id key suffix accessor description version size hash hash_type n_objects n_observations transform_id run_id visibility key_is_virtual created_at updated_at created_by_id
id
13 IheHCqUsQQDHK2AipvsS 1 figures/matrixplot_fig2_score-wgs-hits-per-clu... .png None None None 28814 8zXF_cVwaZnfhmrLbt_0kA md5 None None 6 6 1 True 2024-04-24 12:52:34.019492+00:00 2024-04-24 12:52:34.019517+00:00 2
12 rLpx8GbcnGMmheavsHeX 1 figures/umap_fig1_score-wgs-hits.png .png None None None 118999 DCFDLUMF-UohaBvkThn0mA md5 None None 6 6 1 True 2024-04-24 12:52:33.807092+00:00 2024-04-24 12:52:33.807115+00:00 2
11 DGYZavaUjcxatytOHuQN 1 schmidt22_perturbseq.h5ad .h5ad AnnData perturbseq counts None 20659936 la7EvqEUMDlug9-rpw-udA md5 None None 5 5 1 False 2024-04-24 12:52:28.833062+00:00 2024-04-24 12:52:28.833092+00:00 2
9 yDGCVUS5OKhDm3miBoCp 1 perturbseq/filtered_feature_bc_matrix/matrix.m... .mtx.gz None None None 6 iD0GLFCxZKP89IxyRWczKg md5 None None 4 4 1 False 2024-04-24 12:52:25.493093+00:00 2024-04-24 12:52:25.493111+00:00 2
8 TJvmw13ny1tyoy3OjN1u 1 perturbseq/filtered_feature_bc_matrix/features... .tsv.gz None None None 6 xE_thCDfZxU5csA1MBYgsQ md5 None None 4 4 1 False 2024-04-24 12:52:25.492520+00:00 2024-04-24 12:52:25.492538+00:00 2
7 oYYDUxRR5XC5DRofkGtH 1 perturbseq/filtered_feature_bc_matrix/barcodes... .tsv.gz None None None 6 gmmGlYUzlzFycCWxYP03kQ md5 None None 4 4 1 False 2024-04-24 12:52:25.491718+00:00 2024-04-24 12:52:25.491741+00:00 2
6 lLinsKokQM9DZcbYnUX8 1 fastq/perturbseq_R2_001.fastq.gz .fastq.gz None None None 6 pLg56d15p326_4hVQ5V5kA md5 None None 3 3 1 False 2024-04-24 12:52:22.629889+00:00 2024-04-24 12:52:22.629907+00:00 1
Run
uid transform_id started_at finished_at created_by_id json report_id environment_id is_consecutive reference reference_type created_at
id
1 cO5kE9Ik1qczOL27EKfA 1 2024-04-24 12:52:13.086835+00:00 NaT 1 None None NaN True None None 2024-04-24 12:52:13.087021+00:00
2 01a5r0MpUoGkCQ9bHEY1 2 2024-04-24 12:52:19.025252+00:00 NaT 1 None None NaN True None None 2024-04-24 12:52:19.025351+00:00
3 hdChIaopqbQaStIgJLig 3 2024-04-24 12:52:22.174179+00:00 2024-04-24 12:52:22.631590+00:00 1 None None 4.0 None None None 2024-04-24 12:52:22.174302+00:00
4 iZ2m9cxbnQQ5pRT8cynl 4 2024-04-24 12:52:25.035988+00:00 NaT 2 None None NaN None None None 2024-04-24 12:52:25.036082+00:00
5 UbkHVEJH3mQf9c3CRBm3 5 2024-04-24 12:52:27.061074+00:00 NaT 2 None None 4.0 None None None 2024-04-24 12:52:27.061203+00:00
6 orCfDzWhImfghDC8sVmL 6 2024-04-24 12:52:33.065662+00:00 NaT 2 None None NaN True None None 2024-04-24 12:52:33.065847+00:00
7 gdk2AQ8HsxXKnmdqQXOz 7 2024-04-24 12:52:34.903147+00:00 NaT 1 None None NaN True None None 2024-04-24 12:52:34.903322+00:00
Storage
uid root description type region created_at updated_at created_by_id
id
1 x7bwwJBc /home/runner/work/lamin-usecases/lamin-usecase... None local None 2024-04-24 12:52:10.983099+00:00 2024-04-24 12:52:10.983118+00:00 1
Transform
uid name key version description type latest_report_id source_code_id reference reference_type created_at updated_at created_by_id
id
7 1LCd8kco9lZU6K79 Project flow project-flow 0 None notebook None NaN None None 2024-04-24 12:52:34.897453+00:00 2024-04-24 12:52:34.897496+00:00 1
6 lB3IyPLQSmvt5zKv Perform single cell analysis, integrate with C... integrated-analysis 1 None notebook None NaN None None 2024-04-24 12:52:33.059364+00:00 2024-04-24 12:52:33.059388+00:00 2
5 YqmbO6oMXjRj65cN postprocess_cellranger.py postprocess_cellranger.py 2 None script None 10.0 None None 2024-04-24 12:52:27.057934+00:00 2024-04-24 12:52:27.511308+00:00 2
4 r0Niec8uSXf4eFf7 Cell Ranger None 7.2.0 None pipeline None NaN https://www.10xgenomics.com/support/software/c... None 2024-04-24 12:52:25.033451+00:00 2024-04-24 12:52:25.033470+00:00 2
3 qCJPkOuZAi9q5zKv chromium_10x_upload.py chromium_10x_upload.py 1 None script None 3.0 None None 2024-04-24 12:52:22.171785+00:00 2024-04-24 12:52:22.621308+00:00 1
2 T0T28btuB0PG5zKv GWS CRIPSRa analysis hit-identification 1 None notebook None NaN None None 2024-04-24 12:52:19.019748+00:00 2024-04-24 12:52:19.019782+00:00 1
1 NNxgWtM60QdF9PiE Upload GWS CRISPRa result None None None upload None NaN None None 2024-04-24 12:52:13.083408+00:00 2024-04-24 12:52:13.083427+00:00 1
User
uid handle name created_at updated_at
id
2 bKeW4T6E testuser2 Test User2 2024-04-24 12:52:25.023934+00:00 2024-04-24 12:52:25.023970+00:00
1 DzTjkKse testuser1 Test User1 2024-04-24 12:52:10.980214+00:00 2024-04-24 12:52:22.036115+00:00
Hide code cell content
!lamin login testuser1
!lamin delete --force mydata
!rm -r ./mydata
βœ… logged in with email testuser1@lamin.ai (uid: DzTjkKse)
Traceback (most recent call last):
  File "/opt/hostedtoolcache/Python/3.10.14/x64/bin/lamin", line 8, in <module>
    sys.exit(main())
  File "/opt/hostedtoolcache/Python/3.10.14/x64/lib/python3.10/site-packages/click/core.py", line 1157, in __call__
    return self.main(*args, **kwargs)
  File "/opt/hostedtoolcache/Python/3.10.14/x64/lib/python3.10/site-packages/rich_click/rich_command.py", line 126, in main
    rv = self.invoke(ctx)
  File "/opt/hostedtoolcache/Python/3.10.14/x64/lib/python3.10/site-packages/click/core.py", line 1688, in invoke
    return _process_result(sub_ctx.command.invoke(sub_ctx))
  File "/opt/hostedtoolcache/Python/3.10.14/x64/lib/python3.10/site-packages/click/core.py", line 1434, in invoke
    return ctx.invoke(self.callback, **ctx.params)
  File "/opt/hostedtoolcache/Python/3.10.14/x64/lib/python3.10/site-packages/click/core.py", line 783, in invoke
    return __callback(*args, **kwargs)
  File "/opt/hostedtoolcache/Python/3.10.14/x64/lib/python3.10/site-packages/lamin_cli/__main__.py", line 103, in delete
    return delete(instance, force=force)
  File "/opt/hostedtoolcache/Python/3.10.14/x64/lib/python3.10/site-packages/lamindb_setup/_delete.py", line 130, in delete
    n_objects = check_storage_is_empty(
  File "/opt/hostedtoolcache/Python/3.10.14/x64/lib/python3.10/site-packages/lamindb_setup/core/upath.py", line 720, in check_storage_is_empty
    raise InstanceNotEmpty(message)
lamindb_setup.core.upath.InstanceNotEmpty: Storage location contains 27 objects (2 ignored) - delete them prior to deleting the instance
['/home/runner/work/lamin-usecases/lamin-usecases/docs/mydata/.lamindb/IheHCqUsQQDHK2AipvsS.png', '/home/runner/work/lamin-usecases/lamin-usecases/docs/mydata/.lamindb/R31ngN8Ge3O4rya2itP1.py', '/home/runner/work/lamin-usecases/lamin-usecases/docs/mydata/.lamindb/UW9lOvdl3sUuvwRgRoIL.py', '/home/runner/work/lamin-usecases/lamin-usecases/docs/mydata/.lamindb/_is_initialized', '/home/runner/work/lamin-usecases/lamin-usecases/docs/mydata/.lamindb/jM8RFEuWrSa3SveR4saV.txt', '/home/runner/work/lamin-usecases/lamin-usecases/docs/mydata/.lamindb/pd8LHSUE41sDPHSOGOTw.parquet', '/home/runner/work/lamin-usecases/lamin-usecases/docs/mydata/.lamindb/rLpx8GbcnGMmheavsHeX.png', '/home/runner/work/lamin-usecases/lamin-usecases/docs/mydata/bad64064a38a5d18ae1654872904d661.lndb', '/home/runner/work/lamin-usecases/lamin-usecases/docs/mydata/fastq/perturbseq_R1_001.fastq.gz', '/home/runner/work/lamin-usecases/lamin-usecases/docs/mydata/fastq/perturbseq_R2_001.fastq.gz', '/home/runner/work/lamin-usecases/lamin-usecases/docs/mydata/perturbseq/analysis/analysis.csv', '/home/runner/work/lamin-usecases/lamin-usecases/docs/mydata/perturbseq/cloupe.cloupe', '/home/runner/work/lamin-usecases/lamin-usecases/docs/mydata/perturbseq/filtered_feature_bc_matrix.h5', '/home/runner/work/lamin-usecases/lamin-usecases/docs/mydata/perturbseq/filtered_feature_bc_matrix/barcodes.tsv.gz', '/home/runner/work/lamin-usecases/lamin-usecases/docs/mydata/perturbseq/filtered_feature_bc_matrix/features.tsv.gz', '/home/runner/work/lamin-usecases/lamin-usecases/docs/mydata/perturbseq/filtered_feature_bc_matrix/matrix.mtx.gz', '/home/runner/work/lamin-usecases/lamin-usecases/docs/mydata/perturbseq/metrics_summary.csv', '/home/runner/work/lamin-usecases/lamin-usecases/docs/mydata/perturbseq/molecule_info.h5', '/home/runner/work/lamin-usecases/lamin-usecases/docs/mydata/perturbseq/possorted_genome_bam.bam', '/home/runner/work/lamin-usecases/lamin-usecases/docs/mydata/perturbseq/possorted_genome_bam.bam.bai', '/home/runner/work/lamin-usecases/lamin-usecases/docs/mydata/perturbseq/raw_feature_bc_matrix.h5', '/home/runner/work/lamin-usecases/lamin-usecases/docs/mydata/perturbseq/raw_feature_bc_matrix/barcodes.tsv.gz', '/home/runner/work/lamin-usecases/lamin-usecases/docs/mydata/perturbseq/raw_feature_bc_matrix/features.tsv.gz', '/home/runner/work/lamin-usecases/lamin-usecases/docs/mydata/perturbseq/raw_feature_bc_matrix/matrix.mtx.gz', '/home/runner/work/lamin-usecases/lamin-usecases/docs/mydata/perturbseq/web_summary.html', '/home/runner/work/lamin-usecases/lamin-usecases/docs/mydata/schmidt22-crispra-gws-IFNG.csv', '/home/runner/work/lamin-usecases/lamin-usecases/docs/mydata/schmidt22_perturbseq.h5ad']