Flow cytometry#
You’ll learn how to manage a growing number of flow cytometry datasets as a single queryable collection.
Specifically, you will
read a single
.fcs
file as anAnnData
and seed a versioned collection with it (, current page)append a new dataset (a new
.fcs
file) to create a new version of the collection ()
Setup#
!lamin init --storage ./test-facs --schema bionty
Show code cell output
💡 connected lamindb: testuser1/test-facs
import lamindb as ln
import bionty as bt
import readfcs
bt.settings.organism = "human" # globally set organism to human
💡 connected lamindb: testuser1/test-facs
ln.settings.transform.stem_uid = "OWuTtS4SApon"
ln.settings.transform.version = "0"
ln.track()
💡 notebook imports: bionty==0.42.9 lamindb==0.70.4 pytometry==0.1.4 readfcs==1.1.8 scanpy==1.10.1
💡 saved: Transform(uid='OWuTtS4SApon6K79', name='Flow cytometry', key='facs', version='0', type='notebook', updated_at=2024-04-24 12:50:57 UTC, created_by_id=1)
💡 saved: Run(uid='LW2tZ8S9mgIwhtKgvD9c', transform_id=1, created_by_id=1)
Ingest a first artifact#
Access #
We start with a flow cytometry file from Alpert et al., Nat. Med. (2019).
Calling the following function downloads the artifact and pre-populates a few relevant registries:
ln.core.datasets.file_fcs_alpert19(populate_registries=True)
PosixPath('Alpert19.fcs')
We use readfcs to read the raw fcs file into memory and create an AnnData
object:
adata = readfcs.read("Alpert19.fcs")
adata
AnnData object with n_obs × n_vars = 166537 × 40
var: 'n', 'channel', 'marker', '$PnB', '$PnE', '$PnR'
uns: 'meta'
It has the following features:
adata.var.head(10)
n | channel | marker | $PnB | $PnE | $PnR | |
---|---|---|---|---|---|---|
Time | 1 | Time | 32 | 0,0 | 2097152 | |
Cell_length | 2 | Cell_length | 32 | 0,0 | 128 | |
CD57 | 3 | (In113)Dd | CD57 | 32 | 0,0 | 8192 |
Dead | 4 | (In115)Dd | Dead | 32 | 0,0 | 4096 |
(Ba138)Dd | 5 | (Ba138)Dd | 32 | 0,0 | 4096 | |
Bead | 6 | (Ce140)Dd | Bead | 32 | 0,0 | 16384 |
CD19 | 7 | (Nd142)Dd | CD19 | 32 | 0,0 | 4096 |
CD4 | 8 | (Nd143)Dd | CD4 | 32 | 0,0 | 4096 |
CD8 | 9 | (Nd144)Dd | CD8 | 32 | 0,0 | 4096 |
IgD | 10 | (Nd146)Dd | IgD | 32 | 0,0 | 8192 |
Transform: normalize #
In this use case, we’d like to ingest & store curated data, and hence, we split signal and normalize using the pytometry package.
import pytometry as pm
First, we’ll split the signal from heigh and area metadata:
pm.pp.split_signal(adata, var_key="channel", data_type="cytof")
'area' is not in adata.var['signal_type']. Return all.
adata
AnnData object with n_obs × n_vars = 166537 × 40
var: 'n', 'channel', 'marker', '$PnB', '$PnE', '$PnR', 'signal_type'
uns: 'meta'
Normalize the collection:
pm.tl.normalize_arcsinh(adata, cofactor=150)
Note
If the collection was a flow collection, you’ll also have to compensate the data, if possible. The metadata should contain a compensation matrix, which could then be run by the pytometry compensation function. In the case here, its a cyTOF collection, which doesn’t (really) require compensation.
Validate: cell markers #
First, we validate features in .var
using CellMarker
:
validated = bt.CellMarker.validate(adata.var.index)
❗ 13 terms (32.50%) are not validated for name: Time, Cell_length, Dead, (Ba138)Dd, Bead, CD19, CD4, IgD, CD11b, CD14, CCR6, CCR7, PD-1
We see that many features aren’t validated because they’re not standardized.
Hence, let’s standardize feature names & validate again:
adata.var.index = bt.CellMarker.standardize(adata.var.index)
validated = bt.CellMarker.validate(adata.var.index)
❗ 5 terms (12.50%) are not validated for name: Time, Cell_length, Dead, (Ba138)Dd, Bead
The remaining non-validated features don’t appear to be cell markers but rather metadata features.
Let’s move them into adata.obs
:
adata.obs = adata[:, ~validated].to_df()
adata = adata[:, validated].copy()
Now we have a clean panel of 35 validated cell markers:
validated = bt.CellMarker.validate(adata.var.index)
assert all(validated) # all markers are validated
Register: metadata #
Next, let’s register the metadata features we moved to .obs
.
For this, we create one feature record for each column in the .obs
dataframe:
features = ln.Feature.from_df(adata.obs)
ln.save(features)
We use the Experimental Factor Ontology through Bionty to create a “FACS” label:
bt.ExperimentalFactor.public().search("FACS").head(2) # search the public ontology
ontology_id | definition | synonyms | parents | molecule | instrument | measurement | __ratio__ | |
---|---|---|---|---|---|---|---|---|
name | ||||||||
fluorescence-activated cell sorting | EFO:0009108 | A Flow Cytometry Assay That Provides A Method ... | FAC sorting|FACS | [] | None | None | None | 100.0 |
BALB/c | EFO:0000602 | Balb/C Is A Mouse Strain Of Albion Mice. | BALBc|BALB/cJ|C | [] | None | None | None | 90.0 |
We found one for “FACS”, let’s save it to our in-house registry:
# import the FACS record from the public ontology and save it to the registry
facs = bt.ExperimentalFactor.from_public(ontology_id="EFO:0009108")
facs.save()
We don’t find one for “CyToF”, however, so, let’s create it without importing from a public ontology but label it as a child of “is_cytometry_assay”:
cytof = bt.ExperimentalFactor(name="CyTOF")
cytof.save()
is_cytometry_assay = bt.ExperimentalFactor(name="is_cytometry_assay")
is_cytometry_assay.save()
cytof.parents.add(is_cytometry_assay)
facs.parents.add(is_cytometry_assay)
is_cytometry_assay.view_parents(with_children=True)
Let us look at the content of the registry:
bt.ExperimentalFactor.df()
uid | name | ontology_id | abbr | synonyms | description | molecule | instrument | measurement | public_source_id | created_at | updated_at | created_by_id | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
id | |||||||||||||
3 | 21Qymj4Q | is_cytometry_assay | None | None | None | None | None | None | None | NaN | 2024-04-24 12:51:12.366122+00:00 | 2024-04-24 12:51:12.366142+00:00 | 1 |
2 | ogoPdeOk | CyTOF | None | None | None | None | None | None | None | NaN | 2024-04-24 12:51:12.352834+00:00 | 2024-04-24 12:51:12.352855+00:00 | 1 |
1 | 36GhLFoE | fluorescence-activated cell sorting | EFO:0009108 | None | FAC sorting|FACS | A Flow Cytometry Assay That Provides A Method ... | None | None | None | 39.0 | 2024-04-24 12:51:12.332509+00:00 | 2024-04-24 12:51:12.332534+00:00 | 1 |
Register: data & annotate with metadata #
features = ln.Feature.lookup()
experimental_factors = bt.ExperimentalFactor.lookup()
organisms = bt.Organism.lookup()
artifact = ln.Artifact.from_anndata(
adata, description="Alpert19"
)
artifact.save()
artifact.features.add_from_anndata(var_field=bt.CellMarker.name)
Inspect the registered artifact#
Inspect features on a high level:
artifact.features
Features:
var: FeatureSet(uid='RKhAJHEUNRIBRkn89zJr', n=35, type='number', registry='bionty.CellMarker')
'CD20', 'PD1', 'CD86', 'CD16', 'CD38', 'HLADR', 'Igd', 'CD8', 'CD94', 'Cd4', 'CXCR3', 'CD24', 'Cd14', 'TCRgd', 'CD11B', 'CD127', 'CD27', 'CD45RA', 'CD123', 'CD28', ...
obs: FeatureSet(uid='ScKpgdhCgSxlVjdkGxUf', n=5, registry='core.Feature')
Time (number)
Cell_length (number)
Dead (number)
(Ba138)Dd (number)
Bead (number)
Inspect low-level features in .var
:
artifact.features["var"].df().head()
uid | name | synonyms | gene_symbol | ncbi_gene_id | uniprotkb_id | organism_id | public_source_id | created_at | updated_at | created_by_id | |
---|---|---|---|---|---|---|---|---|---|---|---|
id | |||||||||||
1 | 1dPH2YeJqtGd | CD57 | B3GAT1 | 27087 | Q9P2W7 | 1 | 18 | 2024-04-24 12:51:06.967384+00:00 | 2024-04-24 12:51:06.967408+00:00 | 1 | |
2 | 7KaN0QtWWLnk | Cd19 | CD19 | 930 | P15391 | 1 | 18 | 2024-04-24 12:51:06.967499+00:00 | 2024-04-24 12:51:06.967511+00:00 | 1 | |
3 | rKHBZ9JlBdU5 | Cd4 | CD4 | 920 | B4DT49 | 1 | 18 | 2024-04-24 12:51:06.967598+00:00 | 2024-04-24 12:51:06.967609+00:00 | 1 | |
4 | 5YxpB5QNiCWr | CD8 | CD8A | 925 | P01732 | 1 | 18 | 2024-04-24 12:51:06.967696+00:00 | 2024-04-24 12:51:06.967708+00:00 | 1 | |
5 | 7basFKNKrv4j | Igd | None | None | None | 1 | 18 | 2024-04-24 12:51:06.967795+00:00 | 2024-04-24 12:51:06.967806+00:00 | 1 |
Use auto-complete for marker names in the var
featureset:
markers = artifact.features["var"].lookup()
markers.cd14
CellMarker(uid='5JHfKNo5DC8y', name='Cd14', synonyms='', gene_symbol='CD14', ncbi_gene_id='4695', uniprotkb_id='O43678', updated_at=2024-04-24 12:51:06 UTC, organism_id=1, public_source_id=18, created_by_id=1)
In a plot, we can now easily also show gene symbol and Uniprot ID:
import scanpy as sc
sc.pp.pca(adata)
sc.pl.pca(
adata,
color=markers.cd14.name,
title=(
f"{markers.cd14.name} / {markers.cd14.gene_symbol} /"
f" {markers.cd14.uniprotkb_id}"
),
)
artifact.view_lineage()
Create a collection from the artifact#
collection = ln.Collection(
artifact, name="My versioned cytometry collection", version="1"
)
collection
Collection(uid='b0mgQW1cPcbiIYez8wH6', name='My versioned cytometry collection', version='1', hash='_SSVHoSL17yyiRlHc8Hr', visibility=1, transform_id=1, run_id=1, created_by_id=1)
Let’s inspect the features measured in this collection which were inherited from the artifact:
collection.features
Features:
var: FeatureSet(uid='RKhAJHEUNRIBRkn89zJr', n=35, type='number', registry='bionty.CellMarker')
'CD20', 'PD1', 'CD86', 'CD16', 'CD38', 'HLADR', 'Igd', 'CD8', 'CD94', 'Cd4', 'CXCR3', 'CD24', 'Cd14', 'TCRgd', 'CD11B', 'CD127', 'CD27', 'CD45RA', 'CD123', 'CD28', ...
obs: FeatureSet(uid='ScKpgdhCgSxlVjdkGxUf', n=5, registry='core.Feature')
Time (number)
Cell_length (number)
Dead (number)
(Ba138)Dd (number)
Bead (number)
This looks all good, hence, let’s save it:
collection.save()
Annotate by linking cytof & organism labels:
collection.labels.add(experimental_factors.cytof, features.assay)
collection.labels.add(organisms.human, features.organism)
collection.view_lineage()